国产伦乱,一曲二曲欧美日韩,AV在线不卡免费在线不卡免费,搞91AV视频

當前位置:主頁 > 科技論文 > 軟件論文 >

馬鈴薯典型病害圖像自適應特征融合與快速識別

發(fā)布時間:2018-03-01 18:02

  本文關鍵詞: 馬鈴薯典型病害 Hough變換 主成分分析 加權融合 支持向量機 出處:《農(nóng)業(yè)機械學報》2017年12期  論文類型:期刊論文


【摘要】:針對自然條件下馬鈴薯典型病害區(qū)域定位和識別難的問題,提出了一種馬鈴薯典型病害圖像的自適應特征融合與快速識別方法。該方法利用K-means、Hough變換與超像素算法定位葉片,結合二維Otsu與形態(tài)學法分割病斑區(qū)域,通過病斑圖像顏色、形狀、紋理的自適應主成分分析(PCA)特征加權融合,進行支持向量機(SVM)病害識別。對3類馬鈴薯典型病害圖像進行識別試驗,結果表明:SVM識別模型下,自適應特征融合方法相比PCA降維、特征排序選擇等傳統(tǒng)自適應方法,平均識別率至少提高了1.8個百分點;13個自適應融合特征下,識別方法平均識別率為95.2%,比人工神經(jīng)網(wǎng)絡、貝葉斯分類器提高了3.8個百分點和8.5個百分點,運行時間為0.600 s,比人工神經(jīng)網(wǎng)絡縮短3 s,可有效保證識別精度,大大加快了識別速度。
[Abstract]:An adaptive feature fusion and fast recognition method based on K-means-Hough transform and super-pixel algorithm is proposed to locate the leaves of potato typical diseases. Combining two-dimensional Otsu and morphological method to segment the disease spot region, the adaptive principal component analysis (PCA) method of image color, shape and texture is used for weighted fusion. Three kinds of typical potato disease images are identified by using support vector machine (SVM). The results show that the adaptive feature fusion method is better than the traditional adaptive methods such as PCA dimension reduction, feature ranking selection and so on. The average recognition rate is at least 1.8 percentage points higher than that of the artificial neural network, and the average recognition rate of 13 adaptive fusion features is 95.2 percentage points, which is 3.8 percentage points and 8.5 percentage points higher than that of the artificial neural network and Bayesian classifier. The operating time is 0.600 s, which is 3 s shorter than that of artificial neural network, which can effectively guarantee the recognition accuracy and greatly accelerate the recognition speed.
【作者單位】: 內(nèi)蒙古工業(yè)大學電力學院;
【基金】:國家自然科學基金項目(61661042) 內(nèi)蒙古自治區(qū)自然科學基金項目(2015MS0617)
【分類號】:S435.32;TP391.41

【相似文獻】

相關期刊論文 前10條

1 盧弘斌;;馬鈴薯為什么會退化[J];農(nóng)業(yè)科學實驗;1978年07期

2 高志強;王s,

本文編號:1552980


資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/ruanjiangongchenglunwen/1552980.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶cf412***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
欧美中精品少妇久久久久| 911亚洲精选青草依依| 欧美三级大鸡八免费看| 国产欧美一区免费在线| 国产96y精品| 欧美国产1区2区3区| 综合成人视频在线| 国内精品久久久精品电影院| 欧美内射日韩| 亚洲av美女在线勾引| 搜索欧美日韩成人免费级视频| 日韩无码素人久久精品| 日韩高清无码久久一区二区| 97香蕉碰碰人妻国产欧美hd| av一区二区不卡| 欧洲国产成人爱av在线播放| 人妻丰满au久久鸭| 欧美二区在线日韩一区| 国语精品一区| 中文在线免费看视频| 午夜色欲无码久久影院 | 自拍偷窥亚洲| 欧美 日韩一区 自拍| se94se亚洲一区二区| 97中文国产一区二区| porn 一区 二区 三区| 日本精品免费在线播放| 无码人妻视视频网站洋洋| 人人干人人苹| 亚洲无码一区亚洲图区| 插…爽…视频| 亚洲综合在线观看成人网| P0RN超碰自拍网| 国产日韩欧美产一区二区| 亚洲国产熟女露脸自拍| 91精产国品视频| 一区二区精品视频偷拍夫妻短视频| 无码一区二区人| 中美精品人妻| 爆乳丝袜人妻在线| 网暴国产调教在线|