中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

基于數(shù)據(jù)分析的城市移動(dòng)模式挖掘

發(fā)布時(shí)間:2018-05-12 10:33

  本文選題:地圖匹配 + 交通流; 參考:《東南大學(xué)》2015年碩士論文


【摘要】:智慧城市是充分利用城市各行各業(yè)的數(shù)據(jù),采用信息技術(shù)綜合處理分析,為城市各行各業(yè)提供智能服務(wù),而城市移動(dòng)模式是智慧城市的基礎(chǔ)性課題。本文基于南京七千多輛出租車兩個(gè)月的GPS數(shù)據(jù),采用數(shù)據(jù)分析的方法對(duì)南京城區(qū)移動(dòng)對(duì)象的移動(dòng)模式進(jìn)行了研究。文章主要在地圖匹配(Map Matching, MM)、城市車流模式、城市人群移動(dòng)模式三個(gè)方面展開(kāi)工作。城市車流模式聚焦在日常交通流量和常發(fā)擁堵路段的時(shí)空分布,而城市人群移動(dòng)模式則重點(diǎn)關(guān)注城市人群出行的距離分布、人群出行熱點(diǎn)以及人群流向的時(shí)空變化。文中本地化的結(jié)論為城市交通規(guī)劃、區(qū)域規(guī)劃和公共衛(wèi)生建設(shè)提供了指導(dǎo)性知識(shí)。文中首先綜述了城市移動(dòng)模式的研究背景和研究現(xiàn)狀,然后簡(jiǎn)介了開(kāi)放街道地圖(Open Street Map, OSM),并詳細(xì)分析了出租車GPS數(shù)據(jù)的噪聲。過(guò)濾噪聲之后,本文使用局部ST-Matching算法將出租車GPS數(shù)據(jù)匹配到OSM電子地圖上。之后對(duì)南京不同等級(jí)道路在工作日和非工作日的交通流量和行車速度進(jìn)行統(tǒng)計(jì)分析,發(fā)現(xiàn)單一道路等級(jí)在不同時(shí)間段上行車速度服從正態(tài)分布。本文以此為基礎(chǔ),建立路段擁堵分值模型,引入常發(fā)擁堵指標(biāo)之后完成對(duì)南京常發(fā)擁堵點(diǎn)的提取。發(fā)現(xiàn)市中心的中山南路、內(nèi)環(huán)線、二橋南路和大橋高速等路段是城市路網(wǎng)的瓶頸,經(jīng)常發(fā)生擁堵。其次,本文對(duì)南京城市人群打車出行的距離和不同時(shí)間段打車出行的人數(shù)進(jìn)行統(tǒng)計(jì)分析,驗(yàn)證了打車出行,人群移動(dòng)距離服從冪率的結(jié)論。并使用基于模塊度的層次聚類算法對(duì)南京城市人群出行熱點(diǎn)進(jìn)行分析,發(fā)現(xiàn)在早晚高峰人群的出行熱點(diǎn)主要集中在中華門、安德門、邁皋橋地鐵站等主要的交通換乘點(diǎn)和大型住宅區(qū),而南京火車站和江蘇省人民醫(yī)院等大型醫(yī)院在一天的大多數(shù)時(shí)間內(nèi)都是人們出行的熱點(diǎn),凌晨時(shí)分1912街區(qū)是人們主要的出行熱點(diǎn)。最后,本文采用柵格統(tǒng)計(jì)的方法,對(duì)城市人流動(dòng)向進(jìn)行分析,發(fā)現(xiàn)在不同時(shí)段人群流向表現(xiàn)出很大不同,早高峰主要是住宅區(qū)到車站,晚高峰則剛好相反,表現(xiàn)出較好的對(duì)稱性。在其他時(shí)間段,則語(yǔ)義呈現(xiàn)多樣性。
[Abstract]:The intelligent city is to make full use of the data of various industries in the city, and to adopt the information technology to deal with the analysis synthetically, to provide the intelligent service for the various industries of the city, and the urban mobile mode is the basic subject of the intelligent city. Based on the GPS data of more than 7,000 taxis in Nanjing for two months, this paper studies the moving pattern of moving objects in Nanjing urban area by using the method of data analysis. This paper mainly focuses on map matching, MMX, urban traffic flow and urban crowd movement. The urban traffic flow mode focuses on the spatial and temporal distribution of daily traffic flow and common congested sections, while the urban crowd movement mode focuses on the distance distribution of urban population travel, crowd travel hot spots and the spatio-temporal change of crowd flow direction. The conclusion of localization provides guiding knowledge for urban transportation planning, regional planning and public health construction. In this paper, the research background and present situation of urban mobile mode are summarized, then the open Street map is introduced, and the noise of taxi GPS data is analyzed in detail. After filtering noise, this paper uses local ST-Matching algorithm to match taxi GPS data to OSM electronic map. Then the traffic flow and driving speed of different grades of roads in Nanjing on weekdays and non-workdays are statistically analyzed and it is found that the single grade of roads in different periods of time from normal distribution of driving speed. Based on this model, the model of traffic congestion score is established, and the normal congestion index is introduced to complete the extraction of normal congestion points in Nanjing. It is found that Zhongshan South Road, Inner Ring Road, second Bridge South Road and Bridge Expressway are the bottleneck of urban road network, and congestion often occurs. Secondly, this paper makes a statistical analysis on the distance of the urban population in Nanjing and the number of people traveling in different time periods, and verifies the conclusion that the power ratio of the driving distance of the crowd is the same as that of the ride-hailing trip and the crowd moving distance. And using the hierarchical clustering algorithm based on modular degree to analyze the travel hot spots of Nanjing city crowd, it is found that the hot spots in the morning and evening rush crowd mainly focus on the Zhonghua Gate, the Anderman Gate. Megaoqiao subway stations and other major transportation and residential areas, while Nanjing Railway Station and Jiangsu Provincial people's Hospital and other large hospitals during most of the day is a hot spot for people to travel. The 1912 block in the early hours of the morning is the main hot spot for people to travel. Finally, by using the method of grid statistics, this paper analyzes the trend of urban passenger flow. It is found that the flow of people in different periods is very different. The early rush hour is mainly from residential area to the station, while the late rush hour is just the opposite. Show good symmetry. In other time periods, semantic diversity is present.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU984.191;TP311.13

【參考文獻(xiàn)】

相關(guān)期刊論文 前3條

1 陸鋒;劉康;陳潔;;大數(shù)據(jù)時(shí)代的人類移動(dòng)性研究[J];地球信息科學(xué)學(xué)報(bào);2014年05期

2 童曉君;向南平;朱定局;;基于出租車GPS數(shù)據(jù)的城市居民出行行為分析[J];電腦與電信;2012年Z1期

3 王明生;黃琳;閆小勇;;探索城市公交客流移動(dòng)模式[J];電子科技大學(xué)學(xué)報(bào);2012年01期

相關(guān)博士學(xué)位論文 前1條

1 毛海哠;中國(guó)城市居民出行特征研究[D];北京工業(yè)大學(xué);2005年

相關(guān)碩士學(xué)位論文 前2條

1 齊林;基于GPS數(shù)據(jù)的出租車交通運(yùn)行特性研究及應(yīng)用[D];哈爾濱工業(yè)大學(xué);2013年

2 李聰;地圖匹配算法設(shè)計(jì)與實(shí)現(xiàn)[D];北京交通大學(xué);2011年

,

本文編號(hào):1878274

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/jingjilunwen/jianzhujingjilunwen/1878274.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7d89c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com