最優(yōu)化方法與供應(yīng)鏈信息管理中若干問題的研究
發(fā)布時(shí)間:2024-03-24 07:28
BFGS算法被認(rèn)為是求解最優(yōu)化問題數(shù)值效果最好的擬Newton算法之一。該算法具有很好的全局和局部收斂性。由于BFGS算法產(chǎn)生的矩陣一般是稠密的,因此當(dāng)它用于求解大規(guī)模最優(yōu)化問題時(shí)需采用一定的稀疏技巧。Toint(1981)提出了求解部分可分凸函數(shù)極小問題的部分可分BFGS算法。該算法的一個(gè)主要特點(diǎn)是算法產(chǎn)生的矩陣序列保持目標(biāo)函數(shù)的Hessian陣是一個(gè)具有類似于塊對(duì)角狀的稀疏矩陣。當(dāng)元素目標(biāo)函數(shù)滿足凸性假設(shè)時(shí),Toint(1982)證明此算法具有局部收斂性。如果在上述算法中引入Wolfe-Powell型搜索,Toint(1986)證明了算法全局收斂。 本文的主要成果之一是在Li-Fukushima(2001)提出的修正BFGS(MBFGS)算法的基礎(chǔ)上,提出求解部分可分非凸函數(shù)極小問題的一種修正BFGS算法。算法用對(duì)稱半正定矩陣作為元素目標(biāo)函數(shù)的Hessian陣的近似,使得其和仍然保持目標(biāo)函數(shù)的Hessian陣的某種稀疏性。此算法的另一個(gè)重要性質(zhì)是:算法產(chǎn)生的逼近目標(biāo)函數(shù)Hessian陣的矩陣序列保持對(duì)稱正定性。在較弱的條件下,我們證明了算法的全局收斂性。該結(jié)果可視為Toin...
【文章頁數(shù)】:49 頁
【學(xué)位級(jí)別】:碩士
【部分圖文】:
本文編號(hào):3937135
【文章頁數(shù)】:49 頁
【學(xué)位級(jí)別】:碩士
【部分圖文】:
圖4.1EDI的廣泛應(yīng)用注:①PS側(cè)(公用電話交換網(wǎng)):通過電話撥號(hào)呼叫,借助調(diào)制解調(diào)器(MODEM)進(jìn)行數(shù)據(jù)業(yè)務(wù)的傳遞交換,運(yùn)行速率可達(dá)2.4心skb川s
碩士學(xué)位論文協(xié)議將標(biāo)準(zhǔn)化的文件通過網(wǎng)絡(luò)傳送。接受方按照統(tǒng)一規(guī)定的語法處理報(bào)文,通過信息管理系統(tǒng)和支持作業(yè)管理及決策系統(tǒng),完成綜合的自動(dòng)互換和處理。EDI系統(tǒng)的大范圍使用,縮短了所有相關(guān)的事務(wù)處理周期,簡(jiǎn)化了工作流程和環(huán)節(jié),減少了出錯(cuò)機(jī)會(huì),降低了運(yùn)作成本,提高了經(jīng)濟(jì)效益。早在199....
本文編號(hào):3937135
本文鏈接:http://www.lk138.cn/jingjilunwen/jjtj/3937135.html
最近更新
教材專著