基于FACTS裝置提高電力系統(tǒng)輸送容量的方法研究
發(fā)布時間:2025-06-29 18:44
隨著用電需求的日益增長,輸電系統(tǒng)持續(xù)工作于接近極限狀態(tài)以保證輸電容量和負荷需求的平衡。但電力系統(tǒng)應(yīng)當(dāng)工作于其熱力和電壓限值以內(nèi),否則可能發(fā)生系統(tǒng)崩潰。因此,現(xiàn)有的輸電系統(tǒng)不夠可靠,需要采用新的系統(tǒng)運行方法。架設(shè)新的輸電線路能夠解決上述問題,但不夠經(jīng)濟,亦存在環(huán)境問題。若輸電系統(tǒng)能夠得到更有效的控制,則可輸送更多的電能以解決上述問題。此外,電網(wǎng)的不斷擴大需要對其參數(shù)進行穩(wěn)定、靈活和魯棒的控制,以有效地為負荷供能并滿足快速增長的負荷需求。電力系統(tǒng)須靈活可控才能有效應(yīng)對發(fā)、輸、配和用電各環(huán)節(jié)的突發(fā)狀況。應(yīng)用柔性交流輸電系統(tǒng)(FACTS)裝置的能夠滿足電力系統(tǒng)對靈活控制的需求。FACTS裝置源于90年代,現(xiàn)已備受矚目。這些基于微控制器的裝置有利于提高輸電線路的負載容量、提供無功補償、改善電壓波形與優(yōu)化其他電氣量。本文針對FACTS裝置(靜態(tài)串聯(lián)同步補償器(SSSC)和晶閘管控制串聯(lián)補償器(TCSC))提高輸電線路輸送容量(PTC)的有效性開展了研究。提出一種基于TCSC中點補償技術(shù)的系統(tǒng)可靠性提升方法,可提高浪涌阻抗,保證整個系統(tǒng)的穩(wěn)態(tài)電壓質(zhì)量。本文詳細研究了串聯(lián)FACTS裝置——SSSC和TC...
【文章頁數(shù)】:132 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
Acronyms and Abbreviations
Chapter 1 Introduction
1.1 General Overviews
1.2 Reactive Power
1.2.1 Shunt Compensation
1.2.2 Series Compensation
1.3 Overview of Flexible AC Transmission Systems (FACTS)
1.3.1 Types of FACTS
1.3.1.1 Voltage Source Converter Based FACTS Device
1.3.1.2 Static Series Synchronous Compensator (SSSC)
1.3.1.3 STATCOM
1.3.2 Thyristor Based FACTS Devices
1.3.2.1 Static VAR compensator(SVC)
1.3.2.2 Thyristor Controlled Series Capacitor (TCSC)
1.3.2.3 Advantages ofFACTS Controllers
1.4 Problem Statement
1.5 Literature Survey
1.6 Outline of Research Thesis
Chapter 2 Investigation of Series FACTS devices SSSC and TCSC to Improve PowerTransfer Capability
2.1 Introduction
2.2 Power Enhancement using TCSC
2.2.1 Thyristor Bypass Mode
2.2.2 Thyristor Blocked Mode
2.2.3 Vernier Mode
2.2.4 Control Scheme of TCSC
2.2.5 Circuit diagram for Power Transfer Capability Enhancement
2.2.6 Circuit Description
2.2.7 Operation without TCSC
2.2.8 Operation with TCSC
2.3 Power Enhancement using SSSC
2.3.1 Circuit diagram
2.3.2 Circuit Description
2.3.3 Operation without SSSC
2.3.4 Operation with SSSC
2.3.5 Comparison between TCSC and SSSC
2.4 Power System Reliability
2.4.1 Midpoint Compensation Technique With TCSC To Improve Reliability
2.4.1.1 Midpoint Compensation of two machines 3-bus system
2.4.1.2 Midpoint voltage magnitude
2.5 Simulation Model
2.5.1 Operation
2.5.2 Analysis results
2.6 Conclusion
Chapter 3 Improvement in Power System Loadability using FACTS Controller
3.1 Enhancement in Power System Loadability using FACTS
3.2 Stability Enhancement with TCSC and SSSC
3.3 Simulation Model
3.4 Result and Discussion
3.5 Choice of the FACTS Controllers
3.6 Conclusion
Chapter 4 Optimal Fuzzy PID Controller
4.1 Internal Control Structure
4.2 Controlling Scheme
4.2.1 Conventional PID Controllers
4.3 Fuzzy PID Controller
4.4 Optimal Fuzzy PID based on Genetic Algorithm (GA)
4.4.1 Basic Procedure
4.4.2 Choice of Parameters
4.5 Modeling of TCSC
4.5.1 Transmission Line under Study
4.6 Summary
Chapter 5 Modeling of TCSC with dual TCRs in IEEE 9 bus 3-Machine System
5.1 Introduction
5.2 MATLAB Simulation Model
5.1.1 Fuzzy PID Controller
5.1.2 Fuzzy Techniques
5.3 Defuzzification
5.4 Genetic Algorithm
5.4.1 Introduction
5.4.2 Optimization of control gains base on GA
5.4.2.1 Ghromosome Representation
5.4.2.2 Genetic Operation
5.4.2.3 Objective Function
5.4.3 Advantages of Genetic Algorithm
5.5 Results and Discussions
5.5.1 TCSC with dual TCRs in a transmission line Results (For 75% compensation)
5.5.2 Power transfer capability
5.5.2.1 Remarks
5.5.3 Reference impedance
5.5.3.1 Remarks
5.5.3.2 Error in a TCSC controller
5.5.3.3 Remarks
5.5.4 TCSC with dual TCRs in a transmission line Results (For 50% compensation)
5.5.4.1 Power transfer capability
5.5.4.2 Reference impedance
5.5.4.3 Error in a TCSC controller
5.5.4.4 Remarks
5.6 Conclusion
Chapter 6 Power System Loadability Enhancement by SVC using Load Flow Analysis
6.1 Introduction
6.2 Power Transmission and Distribution
6.2.1 Power System Network of Pakistan
6.2.2 Grid station under consideration
6.3 Load Flow Analysis using ETAP
6.4 Problem Formulation
6.5 Modeling the System
6.6 Results and Discussion
6.6.1 Reasons to choose SVC
6.7 Conclusion
Chapter 7 Conclusion and Future Work
7.1 Conclusion
7.2 Future Work
References
Published Papers
Acknowledgements
About the author
本文編號:4054665
【文章頁數(shù)】:132 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
Acronyms and Abbreviations
Chapter 1 Introduction
1.1 General Overviews
1.2 Reactive Power
1.2.1 Shunt Compensation
1.2.2 Series Compensation
1.3 Overview of Flexible AC Transmission Systems (FACTS)
1.3.1 Types of FACTS
1.3.1.1 Voltage Source Converter Based FACTS Device
1.3.1.2 Static Series Synchronous Compensator (SSSC)
1.3.1.3 STATCOM
1.3.2 Thyristor Based FACTS Devices
1.3.2.1 Static VAR compensator(SVC)
1.3.2.2 Thyristor Controlled Series Capacitor (TCSC)
1.3.2.3 Advantages ofFACTS Controllers
1.4 Problem Statement
1.5 Literature Survey
1.6 Outline of Research Thesis
Chapter 2 Investigation of Series FACTS devices SSSC and TCSC to Improve PowerTransfer Capability
2.1 Introduction
2.2 Power Enhancement using TCSC
2.2.1 Thyristor Bypass Mode
2.2.2 Thyristor Blocked Mode
2.2.3 Vernier Mode
2.2.4 Control Scheme of TCSC
2.2.5 Circuit diagram for Power Transfer Capability Enhancement
2.2.6 Circuit Description
2.2.7 Operation without TCSC
2.2.8 Operation with TCSC
2.3 Power Enhancement using SSSC
2.3.1 Circuit diagram
2.3.2 Circuit Description
2.3.3 Operation without SSSC
2.3.4 Operation with SSSC
2.3.5 Comparison between TCSC and SSSC
2.4 Power System Reliability
2.4.1 Midpoint Compensation Technique With TCSC To Improve Reliability
2.4.1.1 Midpoint Compensation of two machines 3-bus system
2.4.1.2 Midpoint voltage magnitude
2.5 Simulation Model
2.5.1 Operation
2.5.2 Analysis results
2.6 Conclusion
Chapter 3 Improvement in Power System Loadability using FACTS Controller
3.1 Enhancement in Power System Loadability using FACTS
3.2 Stability Enhancement with TCSC and SSSC
3.3 Simulation Model
3.4 Result and Discussion
3.5 Choice of the FACTS Controllers
3.6 Conclusion
Chapter 4 Optimal Fuzzy PID Controller
4.1 Internal Control Structure
4.2 Controlling Scheme
4.2.1 Conventional PID Controllers
4.3 Fuzzy PID Controller
4.4 Optimal Fuzzy PID based on Genetic Algorithm (GA)
4.4.1 Basic Procedure
4.4.2 Choice of Parameters
4.5 Modeling of TCSC
4.5.1 Transmission Line under Study
4.6 Summary
Chapter 5 Modeling of TCSC with dual TCRs in IEEE 9 bus 3-Machine System
5.1 Introduction
5.2 MATLAB Simulation Model
5.1.1 Fuzzy PID Controller
5.1.2 Fuzzy Techniques
5.3 Defuzzification
5.4 Genetic Algorithm
5.4.1 Introduction
5.4.2 Optimization of control gains base on GA
5.4.2.1 Ghromosome Representation
5.4.2.2 Genetic Operation
5.4.2.3 Objective Function
5.4.3 Advantages of Genetic Algorithm
5.5 Results and Discussions
5.5.1 TCSC with dual TCRs in a transmission line Results (For 75% compensation)
5.5.2 Power transfer capability
5.5.2.1 Remarks
5.5.3 Reference impedance
5.5.3.1 Remarks
5.5.3.2 Error in a TCSC controller
5.5.3.3 Remarks
5.5.4 TCSC with dual TCRs in a transmission line Results (For 50% compensation)
5.5.4.1 Power transfer capability
5.5.4.2 Reference impedance
5.5.4.3 Error in a TCSC controller
5.5.4.4 Remarks
5.6 Conclusion
Chapter 6 Power System Loadability Enhancement by SVC using Load Flow Analysis
6.1 Introduction
6.2 Power Transmission and Distribution
6.2.1 Power System Network of Pakistan
6.2.2 Grid station under consideration
6.3 Load Flow Analysis using ETAP
6.4 Problem Formulation
6.5 Modeling the System
6.6 Results and Discussion
6.6.1 Reasons to choose SVC
6.7 Conclusion
Chapter 7 Conclusion and Future Work
7.1 Conclusion
7.2 Future Work
References
Published Papers
Acknowledgements
About the author
本文編號:4054665
本文鏈接:http://www.lk138.cn/kejilunwen/dianlidianqilunwen/4054665.html
上一篇:智能微波爐軟件的設(shè)計與實現(xiàn)
下一篇:沒有了
下一篇:沒有了
最近更新
教材專著